题目内容
用数学归纳法证明≥n(a,b是非负实数,n∈N+)时,假设n=k命题成立之后,证明n=k+1命题也成立的关键是________________.
两边同乘以
解析
观察下列等式:+=;+++=;+++++=;则当且时,++++ ++=________(最后结果用表示).
在平面中,△ABC的角C的内角平分线CE分△ABC面积所成的比.将这个结论类比到空间:在三棱锥A-BCD中,平面DEC平分二面角A-CD-B且与AB交于E,则类比的结论为=________.
观察下列等式:+2=4;×2=4;+3=;×3=;+4=;×4=;…,根据这些等式反映的结果,可以得出一个关于自然数n的等式,这个等式可以表示为______________________.
观察下列等式:(1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5,……照此规律,第n个等式可为 .
若集合A1,A2,…,An满足A1∪A2∪…∪An=A,则称A1,A2,…,An为集合A的一种拆分.已知:①当A1∪A2={a1,a2,a3}时,有33种拆分;②当A1∪A2∪A3={a1,a2,a3,a4}时,有74种拆分;③当A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}时,有155种拆分;……由以上结论,推测出一般结论:当A1∪A2∪…∪An={a1,a2,a3,…,an+1}时,有 种拆分.
依此类推,第个等式为 .
n个连续自然数按规律排列下表:0 3 → 4 7 → 8 11…↓ ↑ ↓ ↑ ↓ ↑1 → 2 5 → 6 9 → 10根据规律,从2010到2012箭头方向依次为________.
下表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i行第j列的数为aij(i≥j,i,j∈N*),则a53等于 ,amn= (m≥3).,,,…