ÌâÄ¿ÄÚÈÝ
£¨2011•½úÖÐÈýÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³ÌÑ¡½²
ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßc1µÄ²ÎÊý·½³ÌΪ£º
£¨¦ÈΪ²ÎÊý£©£¬°ÑÇúÏßc1ÉÏËùÓеãµÄ×Ý×ø±êѹËõΪÔÀ´µÄÒ»°ëµÃµ½ÇúÏßc2£¬ÒÔOΪ¼«µã£¬xÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ
¦Ñcos(¦È-
)=4£®
£¨1£©ÇóÇúÏßc2µÄÆÕͨ·½³Ì£¬²¢Ö¸Ã÷ÇúÏßÀàÐÍ£»
£¨2£©¹ý£¨1£¬0£©µãÓël´¹Ö±µÄÖ±Ïßl1ÓëÇúÏßc2ÏཻÓëA¡¢BÁ½µã£¬ÇóÏÒABµÄ³¤£®
ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßc1µÄ²ÎÊý·½³ÌΪ£º
|
2 |
¦Ð |
4 |
£¨1£©ÇóÇúÏßc2µÄÆÕͨ·½³Ì£¬²¢Ö¸Ã÷ÇúÏßÀàÐÍ£»
£¨2£©¹ý£¨1£¬0£©µãÓël´¹Ö±µÄÖ±Ïßl1ÓëÇúÏßc2ÏཻÓëA¡¢BÁ½µã£¬ÇóÏÒABµÄ³¤£®
·ÖÎö£º£¨1£©ÓÉ
£¨¦ÈΪ²ÎÊý£©£¬µÃµ½ÇúÏßc1µÄ²ÎÊý·½³ÌΪ£º
£¨¦ÈΪ²ÎÊý£©£®ÔÙcos¦È=
£¬sin¦È= yÀûÓÃÈý½Çº¯ÊýµÄÐÔÖÊÄܹ»µÃµ½ÇúÏßc1µÄÆÕͨ·½³Ì£¬ÓÉ´ËÄÜÇó³öÇúÏßc2¼°ÆäÇúÏßÀàÐÍ£®
£¨2£©Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y=4£¬Ö±Ïßl1µÄÖ±½Ç×ø±ê·½³ÌΪx-y=1£®ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©ÓÉ
µÃ3x2-8x=0£¬ÓÉ´ËÄÜÇó³öÏÒABµÄ³¤£®
|
|
x |
2 |
£¨2£©Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y=4£¬Ö±Ïßl1µÄÖ±½Ç×ø±ê·½³ÌΪx-y=1£®ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©ÓÉ
|
½â´ð£º½â£º£¨1£©ÓÉÌâÇúÏßc1µÄ²ÎÊý·½³ÌΪ£º
£¨¦ÈΪ²ÎÊý£©¡£¨2·Ö£©
¡àÇúÏßc1µÄÆÕͨ·½³ÌΪ
+y2=1£¬
¡ßÇúÏßc1ÉÏËùÓеãµÄ×Ý×ø±êѹËõΪÔÀ´µÄÒ»°ëµÃµ½ÇúÏßc2£¬
¡àÇúÏßc2£º
+4y2=1£¬±íʾÒÔÔµãΪÖÐÐÄ£¬½¹µãÔÚxÖáÉÏ£¬³¤Ö᳤Ϊ4£¬¶ÌÖ᳤Ϊ
µÄÍÖÔ²£®¡£¨5·Ö£©
£¨2£©¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ
¦Ñcos(¦È-
)=4£¬
¼´£º¦Ñcos¦È+¦Ñsin¦È=4
Áîx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y=4¡£¨7·Ö£©
¡àÖ±Ïßl1µÄÖ±½Ç×ø±ê·½³ÌΪx-y=1£¬
ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©
ÓÉ
£¬
µÃ3x2-8x=0
¡àx1+x2=
£¬x1x2=0
¡à|AB|=
=
¡£¨10·Ö£©
|
¡àÇúÏßc1µÄÆÕͨ·½³ÌΪ
x2 |
4 |
¡ßÇúÏßc1ÉÏËùÓеãµÄ×Ý×ø±êѹËõΪÔÀ´µÄÒ»°ëµÃµ½ÇúÏßc2£¬
¡àÇúÏßc2£º
x2 |
4 |
1 |
2 |
£¨2£©¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ
2 |
¦Ð |
4 |
¼´£º¦Ñcos¦È+¦Ñsin¦È=4
Áîx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y=4¡£¨7·Ö£©
¡àÖ±Ïßl1µÄÖ±½Ç×ø±ê·½³ÌΪx-y=1£¬
ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©
ÓÉ
|
µÃ3x2-8x=0
¡àx1+x2=
8 |
3 |
¡à|AB|=
1+1 |
| ||
3 |
8 |
3 |
2 |
µãÆÀ£º±¾Ì⿼²é¼òµ¥ÇúÏߵļ«×ø±ê·½³Ì¼°ÆäÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬ÕýÈ·µØ°ÑÇúÏߵļ«×ø±ê·½³Ìת»¯ÎªÆÕͨ·½³Ì£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿