题目内容
【题目】设f(n)是定义在N*上的增函数,f(4)=5,且满足:
①任意n∈N*,f(n) Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表达式.
【答案】(1)f(1)=2,f(2)=3,f(3)=4;(2)f (n)=n+1.
【解析】试题分析:(1)利用已知的表达式,通过 ,直接求,利用函数的单调性以及,即可求出的值;(2)利用函数的单调性及数学归纳法,推出 ,又,然后求出的表达式 .
试题解析:(1)因为f(1)f(4)=f(4)+f(4),所以5 f(1)=10,则f(1)=2.
因为f(n)是单调增函数
所以2=f(1)<f(2)<f(3)<f(4)=5.
因为f(n)∈Z,所以f(2)=3,f(3)=4.
(2)解:由(1)可猜想f (n)=n+1.
证明:因为f (n)单调递增,所以f (n+1)>f (n),又f(n)∈Z,
所以f (n+1)≥f (n)+1.
首先证明:f (n)≥n+1.
因为f (1)=2,所以n=1时,命题成立.
假设n=k(k≥1)时命题成立,即f(k)≥k+1.
则f(k+1)≥f (k)+1≥k+2,即n=k+1时,命题也成立.
综上,f (n)≥n+1.
由已知可得f (2)f (n)=f (2n)+f (n+1),而f(2)=3,f (2n)≥2n+1,
所以3 f (n)≥f (n+1)+2n+1,即f(n+1)≤3 f (n)-2n-1.
下面证明:f (n)=n+1.
因为f (1)=2,所以n=1时,命题成立.
假设n=k(k≥1)时命题成立,即f(k)=k+1,
则f(k+1)≤3f (k)-2k-1=3(k+1)-2k-1=k+2,
又f(k+1)≥k+2,所以f(k+1)=k+2.
即n=k+1时,命题也成立.
所以f (n)=n+1