题目内容
求过曲线y=ex上的点P(1,e)且与曲线在该点处的切线垂直的直线方程.
x+ey-e2-1=0
解析
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)当a≠时,求函数f(x)的单调区间与极值.
已知a,b为常数,且a≠0,函数f(x)=-ax+b+axln x,f(e)=2.①求b;②求函数f(x)的单调区间.
已知函数f(x)=ln x+ax(a∈R).(1)求f(x)的单调区间;(2)设g(x)=x2-4x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.
已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.①当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;②当t≠0时,求f(x)的单调区间.
已知函数f(x)=ln x+-1.(1)求函数f(x)的单调区间;(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围.
已知函数f(x)=x3+ax2+bx.(1)若a=2b,试问函数f(x)能否在x=-1处取到极值?若有可能,求出实数a,b的值;否则说明理由.(2)若函数f(x)在区间(-1,2),(2,3)内各有一个极值点,试求w=a-4b的取值范围.
已知(,是常数),若对曲线上任意一点处的切线,恒成立,求的取值范围.
直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求切点的坐标及a的值.