题目内容
直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求切点的坐标及a的值.
,a=.
解析
已知函数,,其中.(Ⅰ)求的极值;(Ⅱ)若存在区间,使和在区间上具有相同的单调性,求的取值范围.
请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形,斜边的两个端点,设AE=FB=x(cm).①某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?②某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
求过曲线y=ex上的点P(1,e)且与曲线在该点处的切线垂直的直线方程.
已知函数(1)当时,求的最小值;(2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式>1恒成立,求实数a的取值范围;(3)求证:(其中)。
已知函数(e为自然对数的底数)(1)求函数的单调区间;(2)设函数,存在实数,使得成立,求实数的取值范围
已知函数.对于任意实数x恒有(1)求实数的最大值;(2)当最大时,函数有三个零点,求实数k的取值范围。
设f(x)=-x3+x2+2ax.(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]上的最小值为-,求f(x)在该区间上的最大值.
已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行.(1)求的值;(2)已知实数t∈R,求的取值范围及函数的最小值;(3)令,给定,对于两个大于1的正数,存在实数满足:,,并且使得不等式恒成立,求实数的取值范围.