题目内容

(本小题满分12分)
已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上,,求直线的方程.

(1) (2)

解析试题分析:.(1)由已知可设椭圆的方程为 
其离心率为,故,则 
故椭圆的方程为 
(2)解法一 两点的坐标分别记为 
及(1)知,三点共线且点,不在轴上,
因此可以设直线的方程为 
代入中,得,所以 
代入中,则,所以
,得,即
解得,故直线的方程为 
解法二 两点的坐标分别记为 
及(1)知,三点共线且点,不在轴上,
因此可以设直线的方程为 
代入中,得,所以 
,得, 
代入中,得,即 
解得,故直线的方程为
考点:椭圆方程及性质
点评:再求椭圆方程时要注意焦点的位置,第二问中向量关系转化为坐标关系,A,B两点坐标可将向量与两椭圆方程联系起来

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网