题目内容

(本小题满分12分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点。

(I)求椭圆的方程;
(Ⅱ)求线段MN的长度的最小值;
(Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这
样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由

(1)
(2) 线段的长度取最小值
(3)

解析试题分析:(I)由已知得,椭圆的左顶点为上顶点为
故椭圆的方程为
(Ⅱ)直线AS的斜率显然存在,且,故可设直线的方程为,从而
0
,从而





当且仅当,即时等号成立
时,线段的长度取最小值
(Ⅲ)由(Ⅱ)可知,当取最小值时,
此时的方程为
要使椭圆上存在点,使得的面积等于,只须到直线的距离等于,所以在平行于且与距离等于的直线上。
设直线
则由解得
考点:直线与椭圆的位置关系
点评:解决该试题的关键是利用已知中的性质得到其方程,同时能结合韦达定理来得到弦长,同时能结合直线方程和点到直线的距离得到探索性问题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网