题目内容
【题目】如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD与平面ABCD所成角的正切值依次是1、,AP=2,E、F依次是PB、PC的中点.
(1)求证:PB⊥平面AEFD;
(2)求直线EC与平面PAD所成角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)由PA⊥平面ABCD,得AD⊥PA,结合AD⊥AB,得AD⊥平面PAB,从而AD⊥PB,由PB与平面ABCD所成角的正切值为1,可得AB=AP,最后根据△PAB中,中线AE⊥PB且AE、AD是平面AEFD内的相交直线,证出PB⊥平面AEFD;(2)根据PD与平面ABCD所成角的正切值是,即可求得AD,取PA中点G,CD中点H,连接EG、GH、GD,证明∠HGD即为直线EC与平面PAD所成的角,求出GH,即可求出直线EC与平面PAD所成角的正弦值.
(1)证明:∵PA⊥平面ABCD,底面ABCD是矩形
∴AD⊥平面PAB,∴AD⊥PB 因为PA⊥平面ABCD,
故得到PD与平面ABCD所成角为角PBA,正切值为1,故得到AB=AP;
∵E是PB的中点,AB=AP,∴AE⊥PB
∵AB∩AE=A,
∴PB⊥平面AEFD
(2)因为PA⊥平面ABCD, PD与平面ABCD所成角的正切值是,即角PDA的正切值为,故得到 进而得到AD=4,
∵PA⊥平面ABCD,∴CD⊥PA,
又CD⊥AD,∴CD⊥平面PAD,
取PA中点G,CD中点H,连接EG、GH、GD,
则EG∥AB∥CD且,
∴EGHC是平行四边形,∴EC∥HG
∴∠HGD即为直线EC与平面PAD所成的角
在Rt△GAD中, ,故得到,,
∴直线EC与平面PAD所成角的正弦值为
【题目】对某交通要道以往的日车流量(单位:万辆)进行统计,得到如下记录:
日车流量x | 0≤x<5 | 5≤x<10 | 10≤x<15 | 15≤x<20 | 20≤x<25 | x≥25 |
频率 | 0.05 | 0.25 | 0.35 | 0.25 | 0.10 | 0 |
将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.
(1)求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量低于5万辆的概率;
(2)用X表示在未来3天时间里日车流量不低于10万辆的天数,求X的分布列和数学期望.