题目内容
P为△ABC所在平面外一点,O为P在平面ABC内的射影.
(1)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的________心;
(2)若PA⊥BC,PB⊥AC,则O是△ABC的________心;
(3)若PA,PB,PC与底面所成的角相等,则O是△ABC的________心.
(1)内(2)垂(3)外
【解析】(1)P到△ABC三边距离相等,且O在△ABC的内部,可知O到△ABC三边距离相等,即O是△ABC的内心;(2)由PO⊥平面ABC且BC平面ABC,得PO⊥BC,又PA⊥BC,PO与PA是平面POA内两条相交直线,所以BC⊥平面POA,从而BC⊥AO.同理AC⊥BO,所以O是△ABC的垂心;由PA、PB、PC与底面所成的角相等,易得Rt△POA≌Rt△POB≌Rt△POC,从而OA=OB=OC,所以O是△ABC的外心.
练习册系列答案
相关题目