题目内容
如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.
(1)求证:MN∥平面AA1C1C;
(2)若AC=AA1,求证:MN⊥平面A1BC.
(1)见解析(2)见解析
【解析】证明:(1)连结AC1,因为M为A1B与AB1的交点,所以M是AB1的中点.又N为棱B1C1的中点,所以MN∥AC1.又AC1平面AA1C1C,MN平面AA1C1C,所以MN∥平面AA1C1C.
(2)由AC=AA1,则四边形AA1C1C是正方形,所以AC1⊥A1C.因为ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为BC平面ABC,所以CC1⊥BC.因为∠ACB=90°,所以AC⊥BC.因为CC1∩AC=C,所以BC⊥平面AA1C1C,所以BC⊥AC1.又AC1平面AA1C1C,MN∥AC1,所以MN⊥A1C,MN⊥BC.又BC∩A1C=C,所以MN⊥平面A1BC.
练习册系列答案
相关题目