题目内容

10.(1)已知4x+x-1=6,求$8{x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值;
(2)若log32=m,log53=n,用m,n表示log415.

分析 (1)根据指数幂的运算性质即可求出.
(2)根据对数的运算法则和对数的换底公式进行化简即可.

解答 解:(1)显然x>0,令$a=2{x^{\frac{1}{2}}},b={x^{-\frac{1}{2}}}$,则已知a2+b2=6,ab=2,
∴${(a+b)^2}={a^2}+{b^2}+2ab=10,a+b=\sqrt{10}$,
∴$8{x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}={a^3}+{b^3}=(a+b)({a^2}-ab+{b^2})=4\sqrt{10}$,
(2)∵$\left\{{\begin{array}{l}{{{log}_3}2=\frac{lg2}{lg3}=m}\\{{{log}_5}3=\frac{lg3}{lg5}=\frac{lg3}{1-lg2}=n}\end{array}}\right.∴\left\{{\begin{array}{l}{lg2=\frac{mn}{mn+1}}\\{lg3=\frac{n}{mn+1}}\end{array}}\right.$,
∴${log_4}15=\frac{lg15}{lg4}=\frac{lg3+lg5}{2lg2}=\frac{lg3-lg2+1}{2lg2}=\frac{n+1}{2mn}$.

点评 本题主要指数查对数的化简,根据对数的换底公式以及对数的运算法则是解决本题的关键

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网