题目内容
类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=
ax+a-x,其中a>0,且a≠1,下面正确的运算公式是( )
①S(x+y)=S(x)C(y)+C(x)S(y);
②S(x-y)=S(x)C(y)-C(x)S(y);
③2S(x+y)=S(x)C(y)+C(x)S(y);
④2S(x-y)=S(x)C(y)-C(x)S(y).
ax+a-x,其中a>0,且a≠1,下面正确的运算公式是( )
①S(x+y)=S(x)C(y)+C(x)S(y);
②S(x-y)=S(x)C(y)-C(x)S(y);
③2S(x+y)=S(x)C(y)+C(x)S(y);
④2S(x-y)=S(x)C(y)-C(x)S(y).
A.①② | B.③④ | C.①④ | D.②③ |
B
经验证易知①②错误.依题意,注意到2S(x+y)=2(ax+y-a-x-y),又S(x)C(y)+C(x)S(y)=2(ax+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y),综上所述,选B.
练习册系列答案
相关题目