题目内容

(本小题满分12分)
如图,在三棱锥中,底面ABC,
AP="AC," 点分别在棱上,且BC//平面ADE
(Ⅰ)求证:DE⊥平面
(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。
解:(Ⅰ)BC//平面ADE, BC平面PBC, 平面PBC平面ADE=DE
BC//ED                                …………2分
∵PA⊥底面ABC,BC底面ABC ∴PA⊥BC. ………3分
,∴AC⊥BC.
∵PAAC="A," ∴BC⊥平面PAC.           …………5分
∴DE⊥平面.                       …………6分
(Ⅱ)由(Ⅰ)知, DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,    …………8分
,即AE⊥PC,                 …………9分
∵AP="AC," ∴E是PC的中点,ED是PBC的中位线。………10分
                        ………12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网