题目内容
选修4-5:不等式选讲
已知实数满足,且.
(1)证明: ;
(2)证明: .
已知函数为奇函数.
(1)求的值,并求函数的定义域;
(2)判断并证明函数的单调性;
(3)若对于任意,是否存在实数,使得不等式恒成立,若存在,求出实数的取值范围,若不存在,请说明理由.
命题“?x>0,都有x2-x≤0”的否定是( )
A. ?x>0,使得x2-x≤0 B. ?x≤0,都有x2-x>0
C. ?x>0,都有x2-x>0 D. ?x>0,使得x2-x>0
若关于的不等式在上恒成立,则实数的取值范围是( )
A. B. C. D.
某公司有30名男职员和20名女职员,公司进行了一次全员参与的职业能力测试,现随机询问了该公司5名男职员和5名女职员在测试中的成绩(满分为30分),可知这5名男职员的测试成绩分别为16,24,18,
22,20,5名女职员的测试成绩分别为18,23,23,18,23,则下列说法一定正确的是( )
A. 这种抽样方法是分层抽样
B. 这种抽样方法是系统抽样
C. 这5名男职员的测试成绩的方差大于这5名女职员的测试成绩的方差
D. 该测试中公司男职员的测试成绩的平均数小于女职员的测试成绩的平均数
某市需对某环城快速车道进行限速,为了调研该道路车速情况,于某个时段随机对辆车的速度进行取样,测量的车速制成如下条形图:
经计算:样本的平均值,标准差,以频率值作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于或车速大于是需矫正速度.
(1)从该快速车道上所有车辆中任取个,求该车辆是需矫正速度的概率;
(2)从样本中任取个车辆,求这个车辆均是需矫正速度的概率;
(3)从该快速车道上所有车辆中任取个,记其中是需矫正速度的个数为,求的分布列和数学期望.
过双曲线的左焦点作圆的切线,切点为,延长交抛物线于点, 为坐标原点,若,则双曲线的离心率为( )
函数在上的最大值为2.
(1)求实数的值;
(2)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求的最大值.
选修4-1:几何证明选讲
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点,垂直交圆于点.
(1)证明:;
(2)设圆的半径为1,,延长交于点,求外接圆的半径.