题目内容

8.设函数f(x)=$\left\{\begin{array}{l}5-{log_3}(1-x),x<1\\{3^x}-2,x≥1\end{array}\right.$,则满足f(x)≥7的x的取值范围是(  )
A.[$\frac{8}{9}$,1)B.[$\frac{8}{9}$,+∞)C.[2,+∞)D.[$\frac{8}{9}$,1)∪[2,+∞)

分析 若(x)≥7,则$\left\{\begin{array}{l}x<1\\ 5-{log_3}(1-x)≥7\end{array}\right.$或$\left\{\begin{array}{l}x≥1\\{3^x}-2≥7\end{array}\right.$,解得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}5-{log_3}(1-x),x<1\\{3^x}-2,x≥1\end{array}\right.$,
若(x)≥7,则$\left\{\begin{array}{l}x<1\\ 5-{log_3}(1-x)≥7\end{array}\right.$或$\left\{\begin{array}{l}x≥1\\{3^x}-2≥7\end{array}\right.$,
解得$\frac{8}{9}$≤x<1或x≥2,
故选D.

点评 本题考查的知识点是分段函数的应用,指数不等式和对数不等式的解法,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网