题目内容
8.设函数f(x)=$\left\{\begin{array}{l}5-{log_3}(1-x),x<1\\{3^x}-2,x≥1\end{array}\right.$,则满足f(x)≥7的x的取值范围是( )A. | [$\frac{8}{9}$,1) | B. | [$\frac{8}{9}$,+∞) | C. | [2,+∞) | D. | [$\frac{8}{9}$,1)∪[2,+∞) |
分析 若(x)≥7,则$\left\{\begin{array}{l}x<1\\ 5-{log_3}(1-x)≥7\end{array}\right.$或$\left\{\begin{array}{l}x≥1\\{3^x}-2≥7\end{array}\right.$,解得答案.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}5-{log_3}(1-x),x<1\\{3^x}-2,x≥1\end{array}\right.$,
若(x)≥7,则$\left\{\begin{array}{l}x<1\\ 5-{log_3}(1-x)≥7\end{array}\right.$或$\left\{\begin{array}{l}x≥1\\{3^x}-2≥7\end{array}\right.$,
解得$\frac{8}{9}$≤x<1或x≥2,
故选D.
点评 本题考查的知识点是分段函数的应用,指数不等式和对数不等式的解法,难度中档.
练习册系列答案
相关题目