题目内容

19.判断下列对应的是否为集合A到B的函数.
(1)A={1,2,3,4,5},B={0,2,4,6,8},x∈A,x→2x.
(2)A=R,B=R,x∈A,x→y,y=|x|;
(3)A=[0,+∞),B=R,x∈A,x→y,y2=x.

分析 根据函数的定义进行判断即可.

解答 解:(1)A={1,2,3,4,5},B={0,2,4,6,8},x∈A,x→2x.则5→10,即5没有对应.不是函数.
(2)A=R,B=R,x∈A,x→y,y=|x|,满足函数的定义,是函数;
(3)A=[0,+∞),B=R,x∈A,x→y,y2=x.当x>0时,每一个x有两个对应元素±$\sqrt{x}$,不满足元素对应的唯一性,不是函数.

点评 本题主要考查函数定义的理解和应用,根据集合A元素的任意性和对应的唯一性是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网