题目内容
15.在值三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在A1B上.(1)求证:BC⊥A1B;
(2)若VABC-A1B1C1=3$\sqrt{3}$,BC=2,∠BA1C=$\frac{π}{6}$,求三棱锥A1-ABC的体积及AD长.
分析 (1)由AD⊥平面A1BC可知AD⊥BC,由A1A⊥平面ABC可知A1A⊥BC,故BC⊥平面A1AB,从而推出BC⊥A1B;
(2)三棱锥A1-ABC与三棱柱ABC-A1B1C1同底同高,故三棱锥A1-ABC的体积等于三棱柱ABC-A1B1C1体积的$\frac{1}{3}$,由(1)证明可得△A1BC是直角三角形,结合∠BA1C=$\frac{π}{6}$,BC=2可求得A1B的长,由棱锥的体积可得到A1A•AB的值,由A1A•AB=A1B•AD可解出AD.
解答 (1)证明:∵三棱柱ABC-A1B1C1是直三棱柱,
∴A1A⊥平面ABC,∵BC?平面ABC,
∴A1A⊥BC,
∵AD⊥平面A1BC,BC?平面ABC,
∴AD⊥BC,
又∵A1A?平面A1AB,AD?平面A1AB,A1A∩AD=A,
∴BC⊥平面A1AB,∵A1B?平面A1AB,
∴BC⊥A1B.
(2)解∵若V棱柱ABC-A1B1C1=S△ABC•A1A=3$\sqrt{3}$,
∴V${\;}_{棱锥{A}_{1}-ABC}$=$\frac{1}{3}$S△ABC•A1A=$\sqrt{3}$.
由(1)可知BC⊥平面A1AB,AB?平面A1AB,
∴AB⊥BC,
∴V${\;}_{棱锥{A}_{1}-ABC}$=$\frac{1}{3}$S△ABC•A1A=$\frac{1}{6}$×AB×BC×A1A=$\sqrt{3}$.
∴A1A•AB=3$\sqrt{3}$,
∵BC⊥A1B,BC=2,∠BA1C=$\frac{π}{6}$,
∴A1C=2BC=4,A1B=$\sqrt{{A}_{1}{C}^{2}-B{C}^{2}}$=2$\sqrt{3}$,
∵A1A⊥平面ABC,AB?平面ABC,
∴A1A⊥AB,
∵S${\;}_{△{A}_{1}AB}$=$\frac{1}{2}$A1A•AB=$\frac{1}{2}$A1B•AD,
∴AD=$\frac{{A}_{1}A•AB}{{A}_{1}B}$=$\frac{3}{2}$.
点评 本题考查了线面垂直的性质与判断,几何体体积计算,寻求垂直关系是解题关键.