题目内容
【题目】如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQ、QR、RP,要求街道PQ与AB垂直,街道PR与AC垂直,直线PQ表示第三条街道。
(1)如果P位于弧BC的中点,求三条街道的总长度;
(2)由于环境的原因,三条街道PQ、PR、QR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)
【答案】(1);(2)1222万元
【解析】
(1)由为于的角平分线上,利用几何关系,分别表示,,,即可
求得三条街道的总长度;(2)设,,根据三角函数关系及余弦定理,即可求得,,,则总效益,利用辅助角公式及正弦函数的性质,即可求得答案.
(1)由位于弧的中点,在位于的角平分线上,
则,
,
由,且,
为等边三角形,
则,
三条街道的总长度;
(2)设,,
则,,
,
由余弦定理可知:,
,
,
则,
三条街道每年能产生的经济总效益,
,
,
,,
当时,取最大值,最大值为,
三条街道每年能产生的经济总效益最高约为1222万元.
【题目】如图是某创业公司2017年每月份公司利润(单位:百万元)情况的散点图:为了预测该公司2018年的利润情况,根据上图数据,建立了利润y与月份x的两个线性回归模型:①0.94+0.028;②0.96+0.032lnx,并得到以下统计值:
模型① | 模型② | |
残差平方和(yi)2 | 0.000591 | 0.000164 |
总偏差平方和(yi)2 | 0.006050 |
(1)请利用相关指数R2判断哪个模型的拟合效果更好;
(2)为了激励员工工作的积极性,公司每月会根据利润的情况进行奖惩,假设本月利润为y1,而上一月利润为y2,计算z,并规定:若z≥10,则向全体员工发放奖金总额z元;若z<10,从全体员工每人的工资中倒扣10﹣z元作为惩罚,扣完为止,请根据(1)中拟合效果更好的回归模型,试预测208年4月份该公司的奖惩情况?(结果精确到小数点后两位)
参考数据及公式:1.73,2.24,1n2≈0.69,1n3≈1.10,ln5≈1.61.相关指数R2=1.