题目内容
【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点, 轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)设直线与曲线相交于两点,求的值.
【答案】(1)曲线的极坐标方程为: ;(2)6.
【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线的普通方程,再根据化为极坐标方程;(2)将直线l的极坐标方程代入曲线的极坐标方程得,再根据求的值.
试题解析:解:(1)将方程消去参数得,
∴曲线的普通方程为,
将代入上式可得,
∴曲线的极坐标方程为: . -
(2)设两点的极坐标方程分别为,
由消去得,
根据题意可得是方程的两根,
∴,
∴.
【题型】解答题
【结束】
23
【题目】选修4—5:不等式选讲
已知函数.
(1)当时,求关于x的不等式的解集;
(2)若关于x的不等式有解,求a的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)先根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集,(2)先根据绝对值三角不等式求的最小值,再解绝对值不等式可得a的取值范围.
试题解析:解:(1)当时,不等式为,
若,则,即,
若,则,舍去,
若,则,即,
综上,不等式的解集为.
(2)因为,得到的最小值为,所以,所以.
练习册系列答案
相关题目