题目内容

【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点, 轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线的极坐标方程;

(2)设直线与曲线相交于两点,求的值.

【答案】(1)曲线的极坐标方程为: ;(2)6.

【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线的普通方程,再根据化为极坐标方程;(2)将直线l的极坐标方程代入曲线的极坐标方程得,再根据的值.

试题解析:解:1)将方程消去参数

∴曲线的普通方程为

代入上式可得

∴曲线的极坐标方程为: -

2)设两点的极坐标方程分别为,

消去

根据题意可得是方程的两根,

型】解答
束】
23

【题目】选修4—5:不等式选讲

已知函数

(1)时,求关于x的不等式的解集;

(2)若关于x的不等式有解,求a的取值范围.

【答案】12

【解析】试题分析:(1)先根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集,(2)先根据绝对值三角不等式求的最小值,再解绝对值不等式可得a的取值范围.

试题解析:解:(1)当时,不等式为

,则,即

,则,舍去,

,则,即

综上,不等式的解集为.

2)因为,得到的最小值为,所以所以.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网