题目内容

【题目】已知函数f(x)=2x+2x
(1)求方程f(x)= 的根;
(2)求证:f(x)在[0,+∞)上是增函数;
(3)若对于任意x∈[0,+∞),不等式f(2x)≥f(x)﹣m恒成立,求实数m的最小值.

【答案】
(1)解:方程 ,即

亦即

∴2x=2或

∴x=1或x=﹣1


(2)证明:设0≤x1<x2

∴f(x1)<f(x2),∴f(x)在[0,+∞)上是增函数


(3)解:由条件知f(2x)=22x+22x=(2x+2x2﹣2=(f(x))2﹣2,

因为f(2x)≥f(x)﹣m对于x∈[0,+∞)恒成立,且f(x)>0,

m≥f(x)﹣f(2x)=f(x)﹣[f(x)]2+2.

又x≥0,∴由(2)知f(x)最小值为2,

∴f(x)=2时,m最小为2﹣4+2=0


【解析】(1)求出2x的值,从而求出方程的根即可;(2)根据函数单调性的定义证明即可;(3)求出f(2x)的表达式,得到m≥f(x)﹣f(2x)=f(x)﹣[f(x)]2+2,从而求出m的最小值即可.
【考点精析】根据题目的已知条件,利用函数单调性的判断方法的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网