题目内容
【题目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的图象C在x=﹣
处的切线方程是y=
.
(1)若求a,b的值,并证明:当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线y= 上或在其下方;
(2)求证:当x∈(﹣∞,2]时,f(x)≥g(x).
【答案】
(1)解:g'(x)=3ax2﹣2x﹣1,
因为g(x)=ax3﹣x2﹣x+b的图象C在 处的切线方程是
,
所以 ,即
,解得a=1.
因为图象C过点 ,所以
,解得
.
要证明:当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线 上或在其下方,
只要证明:当x∈(﹣∞,2]时, .
令 ,
,令
,得
,
验证得 ,
所以x∈(﹣∞,2], 成立,
所以当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线 上或在其下方
(2)解:只要证明:x∈(﹣∞,2], .
x∈(﹣∞,2],令 ,
,令
,
当 时,h'(x)<0,当
时,h'(x)>0,所以
,
所以x∈(﹣∞,2], 成立,
又由(1)得,x∈(﹣∞,2], ,
所以x∈(﹣∞,2], ,
所以x∈(﹣∞,2],f(x)≥g(x).
【解析】(1)求出函数的导数,根据 ,求出a的值,图象C过点
,求出b的值,问题转化为证明当x∈(﹣∞,2]时,
,根据函数的单调性证明即可;(2)问题转化为证明x∈(﹣∞,2],
,构造函数g(x),根据函数的单调性证明即可.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值).
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i | 1 | 2 | 3 | 4 | 5 | 合计 |
xi(百万元) | 1.26 | 1.44 | 1.59 | 1.71 | 1.82 | 7.82 |
wi(百万元) | 2.00 | 2.99 | 4.02 | 5.00 | 6.03 | 20.04 |
yi(百万元) | 3.20 | 4.80 | 6.50 | 7.50 | 8.00 | 30.00 |
|
其中 .
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y﹣0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)