题目内容
【题目】 设函数,曲线在点处的切线方程为.
(1)求、;
(2)证明.
【答案】(1),;(2)证明见解析.
【解析】
试题分析:(1)根据求导法则求出原函数的导函数,由某点的导数是在该点的切线的斜率,结合切线方程以及该点的函数值,将函数值和切线斜率代入原函数和导函数可求得参数值;(2)由(1 )可得的解析式,为多项式,对要证的不等式进行变形,使之成为两个函数的大小关系式,再分别利用导函数求出两函数在定义域内的最值,可证得两函数的大小关系,进而证得.
试题解析:(1)函数的定义域为,
.
由题意可得,.故,.
(2)证明:由(1)知,,
从而等价于.
设函数,则.
所以当,;
当时,.
故在上单调递减,上单调递增,从而在上的最小值为.
设函数,则.
所以当时,;当时,.故在上单调递增,在上单调递减,从而在上的最大值为.
综上,当时,,即.
练习册系列答案
相关题目