题目内容
15.如图,正方形ABCD的边长为1,P,Q分别为AB,DA上的点.当△APQ的周长为2时,则∠PCQ的大小为( )A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
分析 把Rt△CBP绕C顺时针旋转90°,得到Rt△CDE.则E在AD的延长线上,并且CE=CP,DE=PB,∠ECP=90°,再由△APQ的周长为2,
得到QP=2-AQ-AP,易得QE=DE+DQ=2-AQ-AP,于是△CQE≌△CQP,得到∠PCQ=∠QCE,得到∠PCQ=45°.
解答 解:把Rt△CBP绕C顺时针旋转90°,得到Rt△CDE,如图,
则E在AD的延长线上,并且CE=CP,DE=PB,∠ECP=90°,
∵△APQ的周长为2,
∴QP=2-AQ-AP,
而正方形ABCD的边长为1,
∴DE=PB=1-AP,
DQ=1-AQ,
∴QE=DE+DQ=2-AQ-AP,
∴QE=QP,
而CQ公共,
∴△CQE≌△CQP,
∴∠PCQ=∠QCE,
∴∠PCQ=45°.
故选B.
点评 本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了三角形全等的判定与性质
练习册系列答案
相关题目
20.已知点A(2,-3),B(-3,-2),直线l方程为kx+y-k-1=0,且与线段AB相交,求直线l的斜率k的取值范围为( )
A. | k≥$\frac{3}{4}$或k≤-4 | B. | k≥$\frac{3}{4}或k≤-\frac{1}{4}$ | C. | -4≤k≤$\frac{3}{4}$ | D. | $\frac{3}{4}$≤k≤4 |