题目内容

20.已知点A(2,-3),B(-3,-2),直线l方程为kx+y-k-1=0,且与线段AB相交,求直线l的斜率k的取值范围为(  )
A.k≥$\frac{3}{4}$或k≤-4B.k≥$\frac{3}{4}或k≤-\frac{1}{4}$C.-4≤k≤$\frac{3}{4}$D.$\frac{3}{4}$≤k≤4

分析 直线l过定点P(1,1),且与线段AB相交,利用数形结合法,求出PA、PB的斜率,
从而得出l的斜率k的取值范围.

解答 解:∵直线l的方程kx+y-k-1=0可化为
k(x-1)+y-1=0,
∴直线l过定点P(1,1),且与线段AB相交,如图所示;
则直线PA的斜率是kPA=$\frac{-3-1}{2-1}$=-4,
直线PB的斜率是kPB=$\frac{-2-1}{-3-1}$=$\frac{3}{4}$,
则直线l与线段AB相交时,它的斜率k的取值范围是
-4≤k≤$\frac{3}{4}$.
故选:A.

点评 本题考查了直线方程的应用问题,也考查了数形结合的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网