题目内容
【题目】已知函数.
(1)若函数的图象与轴无交点,求的取值范围;
(2)若函数在上存在零点,求的取值范围.
【答案】(1);(2).
【解析】
(1)由题意可得方程f(x)=0的根的判别式△<0,解不等式即可得到范围;
(2)求出二次函数的对称轴方程,判断f(x)在[﹣1,1]的单调性,再由零点的定义可得f(1)≤0,f(﹣1)≥0,解不等式即可得到所求范围.
(1)若函数y=f(x)的图象与x轴无交点,
则方程f(x)=0的根的判别式Δ<0,即16-4(a+3)<0,
解得a>1.
故a的取值范围为a>1.
(2)因为函数f(x)=x2-4x+a+3图象的对称轴是x=2,
所以y=f(x)在[-1,1]上是减函数.
又y=f(x)在[-1,1]上存在零点,
所以,即,
解得-8≤a≤0.
故实数a的取值范围为-8≤a≤0.
练习册系列答案
相关题目
【题目】某地区某农产品近几年的产量统计如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代码t | 1 | 2 | 3 | 4 | 5 | 6 |
年产量y(万吨) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根据表中数据,建立关于的线性回归方程;
(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.(参考数据:,计算结果保留小数点后两位)