题目内容
【题目】在平面直角坐标系xOy中,若圆C的圆心在第一象限,圆C与x轴相交于A(1,0)、B(3,0)两点,且与直线x﹣y+1=0相切,则圆C的标准方程为 .
【答案】(x﹣2)2+(y﹣1)2=2
【解析】解:∵圆C的圆心在第一象限,圆C与x轴相交于A(1,0)、B(3,0)两点, ∴设圆心坐标为(2,b)(b>0),
∵圆与直线x﹣y+1=0相切,
∴ ,
∴b2+6b﹣7=0,解得b=1或b=﹣7,
∵b>0,∴b=1
∴圆C的圆心C(2,1),半径r= = .
∴圆C的标准方程为(x﹣2)2+(y﹣1)2=2
所以答案是:(x﹣2)2+(y﹣1)2=2.
【考点精析】利用圆的标准方程对题目进行判断即可得到答案,需要熟知圆的标准方程:;圆心为A(a,b),半径为r的圆的方程.
练习册系列答案
相关题目
【题目】某算法的程序图如图所示,其中输入的变量x在1,2,3,…,30这30个整数中等可能随机产生.
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据: 甲的频数统计表(部分)
运行次数 | 输出y=1的频数 | 输出y=2的频数 | 输出y=3的频数 |
50 | 24 | 19 | 7 |
… | … | … | … |
2000 | 1027 | 776 | 197 |
乙的频数统计表(部分)
运行次数 | 输出y=1的频数 | 输出y=2的频数 | 输出y=3的频数 |
50 | 26 | 11 | 13 |
… | … | … | … |
2000 | 1051 | 396 | 553 |
当n=2000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.