题目内容
7.直线a∥α,直线b⊥α,那么直线a与直线b的位置关系一定是( )A. | 平行 | B. | 异面 | C. | 垂直 | D. | 不相交 |
分析 根据空间线面关系和线线关系得到判断.
解答 解:由题意可得:直线a∥α,直线b⊥α,
结合线线垂直的判定可得:a⊥b,
所以直线a,b的位置关系是:垂直,
故选:C.
点评 本题考查了由空间线面关系判断线线关系;解决此类问题的关键是熟练掌握有关线面平行与垂直关系,以及线线平行与垂直的关系.
练习册系列答案
相关题目
17.2015年6月20日是我们的传统节日--”端午节”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=( )
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{10}$ | D. | $\frac{3}{10}$ |
18.若运行所给程序输出的值是16,则输入的实数x值为( )
A. | 32 | B. | 8 | C. | -4或8 | D. | 4或-4或8 |
15.在△ABC中,已知a=2,b=$\sqrt{3}$,c=3,则cosC=( )
A. | $\frac{5}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{\sqrt{3}}{9}$ | D. | -$\frac{\sqrt{3}}{6}$ |
12.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三个中至少有一人达标的概率为( )
A. | 0.015 | B. | 0.005 | C. | 0.985 | D. | 0.995 |
19.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:
(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.)
日 期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均气温x(°C) | 9 | 10 | 12 | 11 | 8 |
销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.)