题目内容
9.计算:0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0=19.分析 直接利用有理指数幂化简求值即可.
解答 解:0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0
=$\frac{10}{3}$-49+64-$\frac{1}{3}$+1
=19.
故答案为:19.
点评 本题考查有理指数幂的化简求值,考查计算能力.
练习册系列答案
相关题目
17.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(-x),若g(x)=x2f(x),则不等式g(x)<g(1-3x)的解集是( )
A. | ($\frac{1}{4}$,+∞) | B. | (-∞,$\frac{1}{4}$) | C. | (0,$\frac{1}{4}$) | D. | (-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞) |
5.设锐角△ABC的内角A,B,C的对应边分别为a,b,c;已知a=2bsinA,则$\frac{a}{2c}$的取值范围为( )
A. | $(0,\frac{{\sqrt{3}}}{3})$ | B. | $(0,\frac{{\sqrt{3}}}{5})$ | C. | $(\frac{1}{2},\frac{{\sqrt{3}}}{2})$ | D. | $(\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{3})$ |
2.过空间一点作平面,使其同时与两条异面直线平行,这样的平面( )
A. | 只有一个 | B. | 至多有两个 | C. | 不一定有 | D. | 有无数个 |