题目内容
【题目】在底面为菱形的四棱柱中,平面.
(1)证明:平面;
(2)求二面角的正弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)由已知可证,即可证明结论;
(2)根据已知可证平面,建立空间直角坐标系,求出坐标,进而求出平面和平面的法向量坐标,由空间向量的二面角公式,即可求解.
方法一:(1)依题意,且∴,
∴四边形是平行四边形,∴,
∵平面,平面,
∴平面.
(2)∵平面,∴,
∵且为的中点,∴,
∵平面且,
∴平面,
以为原点,分别以为轴、轴、轴的正方向,
建立如图所示的空间直角坐标系,
则,,,,
∴
设平面的法向量为,
则,∴,取,则.
设平面的法向量为,
则,∴,取,则.
∴,
设二面角的平面角为,则,
∴二面角的正弦值为.
方法二:(1)证明:连接交于点,
因为四边形为平行四边形,所以为中点,
又因为四边形为菱形,所以为中点,
∴在中,且,
∵平面,平面,
∴平面
(2)略,同方法一.
练习册系列答案
相关题目
【题目】为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.
(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:
A市居民 | B市居民 | |
喜欢杨树 | 300 | 200 |
喜欢木棉树 | 250 | 250 |
是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;
(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;
(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |