题目内容

【题目】已知抛物线的焦点与椭圆的一个焦点重合,椭圆的左、右顶点分别为是椭圆上一点,记直线的斜率为,且有.

1)求椭圆的方程;

2)若过点的直线与椭圆相交于不同两点,且满足为坐标原点),求实数的取值范围.

【答案】1;(2

【解析】

1)根据抛物线的焦点可得,由,设根据,即可求出,从而得到椭圆方程;

(2)由题意,直线的斜率存在,设直线的方程为,联立直线与椭圆方程,消元由根的判别式大于零得到,设可得,可得,即可得到,从而得解;

解:(1)依题意, 抛物线的焦点为,则,且

,设,则有,即

即椭圆的方程为.

(2)由题意,直线的斜率存在,设直线的方程为.

消去,得

,则是方程(*)的两根,

所以,即

,当时满足题意;

时,

由点在椭圆上,则

再由①和,得

综上:

.

练习册系列答案
相关题目

【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科.山东省采用3+3模式,其中语文、数学、外语三科为必考科目,每门科目满分均为150分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(63),每门科目满分均为100分.为了应对新高考,某高中从高一年级1100名学生(其中男生600人,女生500人)中,采用分层抽样的方法从中抽取n名学生进行调查,其中女生抽取50人.

1)求n的值;

2)学校计划在高一上学期开设选修中的物理地理两个科目,为了了解学生对这两个科目的选课情况,对抽取到的n名学生进行问卷调查(假定每名学生在物理地理这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的一个不完整的2×2列联表,请将下面的2×2列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;

选择物理

选择地理

总计

男生

10

女生

30

合计

3)按(2)中选物理的男生女生的比例进行分层抽样,从选物理的学生中抽出8名学生,再从这8名学生中抽取3人组成物理兴趣小组,设这3人中女生的人数为X,求X的概率分布列及数学期望.

005

001

0005

0001

3841

6635

7879

10828

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网