题目内容
【题目】已知抛物线的焦点与椭圆的一个焦点重合,椭圆的左、右顶点分别为,是椭圆上一点,记直线的斜率为、,且有.
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于不同两点和,且满足(为坐标原点),求实数的取值范围.
【答案】(1);(2)
【解析】
(1)根据抛物线的焦点可得,由,设根据,即可求出,,从而得到椭圆方程;
(2)由题意,直线的斜率存在,设直线的方程为,联立直线与椭圆方程,消元由根的判别式大于零得到,设可得由得,可得,即可得到,从而得解;
解:(1)依题意, 抛物线的焦点为,则,且
,设,则有,即
,
,
即椭圆的方程为.
(2)由题意,直线的斜率存在,设直线的方程为.
由消去,得
设,则是方程(*)的两根,
所以,即①
且
由得,当时满足题意;
当时,
由点在椭圆上,则,
即,
再由①和,得
综上:
.
【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科.山东省采用3+3模式,其中语文、数学、外语三科为必考科目,每门科目满分均为150分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每门科目满分均为100分.为了应对新高考,某高中从高一年级1100名学生(其中男生600人,女生500人)中,采用分层抽样的方法从中抽取n名学生进行调查,其中女生抽取50人.
(1)求n的值;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的n名学生进行问卷调查(假定每名学生在“物理”和“地理”这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的一个不完整的2×2列联表,请将下面的2×2列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 30 | ||
合计 |
(3)按(2)中选“物理”的男生女生的比例进行分层抽样,从选“物理”的学生中抽出8名学生,再从这8名学生中抽取3人组成物理兴趣小组,设这3人中女生的人数为X,求X的概率分布列及数学期望.
附
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
【题目】2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:
年龄段 | ||||
人数(单位:人) | 180 | 180 | 160 | 80 |
约定:此单位45岁~59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.
(1)抽出的青年观众与中年观众分别为多少人?
(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列列联表,并回答能否有的把握认为年龄层与热衷关心民生大事有关?
热衷关心民生大事 | 不热衷关心民生大事 | 总计 | |
青年 | 12 | ||
中年 | 5 | ||
总计 | 30 |
(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上表演节目,则抽出的2人能胜任才艺表演的概率是多少?
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.