题目内容
【题目】已知函数,则以下结论正确的是( )
A.函数的单调减区间是
B.函数有且只有1个零点
C.存在正实数,使得成立
D.对任意两个正实数,,且,若则
【答案】ABD
【解析】
A选项,对函数求导,解对应不等式,可判断A;
B选项,令,对其求导,研究单调性,根据零点存在定理,可判断B;
C选项,先由得到,令,用导数的方法判断其单调性,即可判定C;
D选项,令,则,令,对其求导,判定其单调性,得到,令,根据题中条件,即可判定出D.
A选项,因为,所以,
由得,;由得,,
因此函数在上单调递减,在上单调递增;故A正确;
B选项,令,则显然恒成立;
所以函数在上单调递减;
又,,
所以函数有且仅有一个零点;故B正确;
C选项,若,可得,
令,则,
令,则,
由得;由得;
所以函数在上单调递增,在上单调递减;
因此;所以恒成立,即函数在上单调递减,
所以函数无最小值;
因此,不存在正实数,使得成立;故C错;
D选项,令,则,则;
令,
则,
所以在上单调递减,则,即,
令,由,得,则,
当时,显然成立,
所以对任意两个正实数,,且,若则.故D正确.
故选:ABD.
【题目】2018年11月21日,意大利奢侈品牌“﹠”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:,,,,,,得到如图所示的频率分布直方图;
并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如下表.
一般关注 | 强烈关注 | 合计 | |
男 | 45 | ||
女 | 10 | 55 | |
合计 | 100 |
(1)在答题卡上补全列联表中数据;并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?
(2)现已从“强烈关注”的网友中按性别分层抽样选取了5人,再从这5人中选取2人,求这2人中至少有1名女性的概率.
参考公式及数据:,
0.05 | 0.010 | |
3.841 | 6.635 |
【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团 | 未参加书法社团 | |
参加演讲社团 | 8 | 5 |
未参加演讲社团 | 2 | 30 |
(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.