题目内容
【题目】已知函数.
(1)当时,求函数在上的最大值;
(2)令,若在区间上为单调递增函数,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又是的导函数.若正常数满足条件.试比较与0的关系,并给出理由.
【答案】(1)-1;(2);(3)见解析.
【解析】试题分析:(1)根据导数,即可得出函数的单调性,从而得到函数的最大值.
(2)由在区间单调递增函数,所以在(0,3)恒成立,分离参数得出,即可求解实数的取值范围.
(3)由题意得有两个实根,化简可得,可得,只需证明
令,设即可得到.
试题解析:
(1)
函数在[,1]是增函数,在[1,2]是减函数,
所以.
(2)因为,所以,
因为在区间单调递增函数,所以在(0,3)恒成立
,有=,()
综上:
(3)与0的关系为: 理由如下:
∵,又有两个实根,
∴,两式相减,得,
∴,
于是
.
.
要证: ,只需证:
只需证:.(*)
令,∴(*)化为 ,只证即可.
在(0,1)上单调递增,,
即.∴.
(其他解法根据情况酌情给分)
【题目】某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如下表所示:
积极参加班级工作 | 不积极参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性不高 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?
(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(3)学生的学习积极性与对待班极工作的态度是否有关系?请说明理由.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】第届夏季奥林匹克运动会将于 2016 年 8 月 5 日—21 日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据( 单位: 枚).
第届伦敦 | 第届 北京 | 第届雅典 | 第届悉尼 | 第届亚特兰大 | |
中国 | |||||
俄罗斯 |
(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图, 并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度( 不要求计算出具体数值, 给出结论即可);
(2)甲、 乙、 丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多( 假设两国代表团获得的金牌数不会相等) , 规定甲、 乙、 丙必须在两个代表团中选一个, 已知甲、 乙猜中国代表团的概率都为, 丙猜中国代表团的概率为 , 三人各自猜哪个代表团的结果互不影响.现让甲、 乙、 丙各猜一次, 设三人中猜中国代表团的人数为,求的分布列及数学期望.
【题目】大家知道, 莫言是中国首位获得诺贝尔奖的文学家, 国人欢欣鼓舞.某高校文学社从男女生中各抽取名同学调查对莫言作品的了解程度, 结果如下:
阅读过莫言的作品数( 篇) | |||||
男生 | |||||
女生 |
(1)试估计该校学生阅读莫言作品超过篇的概率;
(2)对莫言作品阅读超过篇的则称为“对莫言作品非常了解” , 否则为“ 一般了解” .根据题意完成下表, 并判断能否在犯错误的概率不超过的前提下, 认为对莫言作品非常了解与性别有关?
非常了解 | 一般了解 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:,其中