题目内容
(10分)在圆的所有切线中,求在坐标轴上截距相等的切线方程。
解析
(本小题满分12分) 已知圆过两点,且圆心在上.(1)求圆的方程;(2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.
、已知圆,直线(1)求证:直线恒过定点;(2)设与圆交于两点,若,求直线的方程
(本小题满分12分)已知定点A(4,0)和圆x2+y2=4上的动点B,点P分AB之比为2∶1,求点P的轨迹方程
已知直线过点,圆:. (1)求截得圆弦长最长时的直线方程;(2)若直线被圆N所截得的弦长为,求直线的方程.
已知圆x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圆心为C,直线l:y=x+m.(1)若m=4,求直线l被圆C所截得弦长的最大值;(2)若直线l是圆心下方的切线,当a在的变化时,求m的取值范围.
19.(本小题满分8分)已知,过点M(-1,1)的直线l被圆C:x2 + y2-2x + 2y-14 = 0所截得的弦长为4,求直线l的方程.
已知双曲线(a>0,b>0)的一条渐近线与圆相交于A,B两点,若|AB|=2,则该双曲线的离心率为( )
(本小题满分8分)已知点、的坐标分别为、,动点满足.(1)求点的轨迹的方程;(2)过点作直线与轨迹相切,求切点的坐标.