题目内容
【题目】已知抛物线:的焦点为,直线:与抛物线交于,两点.
(1)若,求直线的方程;
(2)过点作直线交抛物线于,两点,若线段,的中点分别为,,直线与轴的交点为,求点到直线与距离和的最大值.
【答案】(1)或(2)
【解析】
(1)直线方程和抛物线方程联立,可得由利用韦达定理求得即可得出结果.
(2)由(1)中韦达定理可求得点坐标为,直线,且均过焦点为,可求,进而求得直线的方程,得到的坐标为(3,0),设点到直线和的距离分别为,,由利用基本不等式性质,即可求得结果.
解:(1)由已知得,
直线:与联立消,得.
设,,则,.
由,得,
即,得,
所以或.
所以直线的方程为或
(2)由(1)知,所以,所以.
因为直线过点且,所以用替换得.
当时,:,
整理化简得,
所以当时,直线过定点(3,0);
当时,直线的方程为,过点(3,0).
所以点的坐标为(3,0)
设点到直线和的距离分别为,,由,,得.
因为,所以,当且仅当时,等号成立,
所以点到直线和的距离和的最大值为.
练习册系列答案
相关题目