题目内容
设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.(1)求公差d的取值范围.(2)求{an}前n项和Sn最大时n的值.
(1) -<d<-3 (2)6
解析
已知等差数列{}的前n项和为Sn,公差d≠0,且S3=9,a1,a3,a7成等比数列.(1)求数列{}的通项公式;(2)设=,求数列{}的前n项和.
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0.(1)求数列{an}的通项公式;(2)若bn=2(an+),求数列{bn}的前n项和Sn.
已知数列{an}的首项为a1=1,其前n项和为Sn,且对任意正整数n有n,an,Sn成等差数列.(1)求证:数列{Sn+n+2}成等比数列.(2)求数列{an}的通项公式.
已知等差数列的首项为,公差为,等比数列的首项为,公比为,.(1)求数列与的通项公式;(2)设第个正方形的边长为,求前个正方形的面积之和.(注:表示与的最小值.)
等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为Sn.(1)求数列{an}的通项公式.(2)设数列{bn}满足bn=,其前n项和为Tn,求证:Tn<(n∈N*).
已知数列{an}满足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).(1)求证:数列是等差数列并求数列{an}的通项公式;(2)设bn=anan+1,求证:b1+b2+…+bn< .
已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{an}的通项公式;(2)设Tn=Sn-(n∈N*),求数列{Tn}的最大项的值与最小项的值.
已知数列是公差不为零的等差数列,,且是和的等比中项.(1)求数列的通项公式;(2)设数列的前项和为,,试问当为何值时,最大?并求出的最大值.