题目内容
【题目】有4位同学在同一天的上午、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测“握力”,下午不测“台阶”,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )
A.264B.72C.266D.274
【答案】A
【解析】
先安排 位同学参加上午的“身高与体重”、“立定跳远”、“肺活量”、“台阶”测试,共有 种不同安排方式;接下来安排下午的“身高与体重”、“立定跳远”、“肺活量”、“握力”测试,假设A、B、C同学上午分别安排的是“身高与体重”、“立定跳远”、“肺活量”测试,若D同学选择“握力”测试,安排A、B、C同学分别交叉测试,有 种;若D同学选择“身高与体重”、“立定跳远”、“肺活量”测试中的 种,有 种方式,安排A、B、C同学进行测试有 种;根据计数原理共有安排方式的种数为 故选A.
练习册系列答案
相关题目
【题目】甲、乙两名射箭选手最近100次射箭所得环数如下表所示.
甲选手100次射箭所得环数
环数 | 7 | 8 | 9 | 10 |
次数 | 15 | 24 | 36 | 25 |
乙选手100次射箭所得环数
环数 | 7 | 8 | 9 | 10 |
次数 | 10 | 20 | 40 | 30 |
以甲、乙两名射箭选手这100次射箭所得环数的频率作为概率,假设这两人的射箭结果相互独立.
(1)若甲、乙各射箭一次,所得环数分别为X,Y,分别求X,Y的分布列并比较的大小;
(2)甲、乙相约进行一次射箭比赛,各射3箭,累计所得环数多者获胜.若乙前两次射箭均得10环,且甲第一次射箭所得环数为9,求甲最终获胜的概率.