题目内容
16.过点P(1,2)的直线交x,y轴的正半轴于A,B两点,当|AB|最小时,直线l的方程为y-2=$\root{3}{2}$(x-1).分析 如图所示,设∠OAB=α,α∈$(0,\frac{π}{2})$.可得|PA|=$\frac{2}{sinα}$,|PB|=$\frac{1}{cosα}$.|AB|=|PA|+|PB|=$\frac{2}{sinα}$+$\frac{1}{cosα}$=f(α),利用导数研究其单调性极值即可得出.
解答 解:如图所示,
设∠OAB=α,α∈$(0,\frac{π}{2})$.
则|PA|=$\frac{2}{sinα}$,|PB|=$\frac{1}{cosα}$.
∴|AB|=|PA|+|PB|=$\frac{2}{sinα}$+$\frac{1}{cosα}$=f(α),
f′(α)=$-\frac{2cosα}{si{n}^{2}α}$+$\frac{sinα}{co{s}^{2}α}$=$\frac{(sinα-\root{3}{2}cosα)(si{n}^{2}α+\root{3}{4}cosα+\root{3}{2}sinαcosα)}{si{n}^{2}αco{s}^{2}α}$,
当tanα>$\root{3}{2}$时,f′(α)>0,此时函数f(α)单调递增;当0<tanα<$\root{3}{2}$时,f′(α)<0,此时函数f(α)单调递减.
∴当tanα=$\root{3}{2}$时,函数f(α)取得最小值,
此时直线l的方程为:y-2=$\root{3}{2}$(x-1).
故答案为:y-2=$\root{3}{2}$(x-1).
点评 本题考查了利用导数研究函数单调性极值、直线的方程、三角函数的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.已知函数f(x)是奇函数,当x>0时,f(x)=x-1,则f(x)<0的解集为( )
A. | (-∞,0) | B. | (-∞,1) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-1)∪(0,1) |