题目内容
已知
是偶函数.
(1)求
的值;
(2)证明:对任意实数
,函数
的图像与直线
最多只有一个交点;
(3)设
若函数
的图像有且只有一个公共点,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250514121129.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051428313.png)
(2)证明:对任意实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051443285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051443562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051459642.png)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250514751097.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051490602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051506283.png)
(1)
;(2)证明见解析;(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051521489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051537779.png)
试题分析:(1)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051553908.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250515681486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051584522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250515991054.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051615432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051631267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250516461214.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051506283.png)
试题解析:解:(1)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051677915.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051521489.png)
(2)证明:即证方程组
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250515681486.png)
即证方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051584522.png)
下面用反证法证明:
假设上述方程有两个不同的解
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051771622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250517711695.png)
但
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051787372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051802442.png)
故假设不成立.从而结论成立. 7分
(3)问题转化为方程:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250515991054.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051615432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051631267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250516461214.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051865339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051880662.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051896366.png)
若二次方程(*)两根异号,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051911657.png)
若二次方程(*)两根相等且为正,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240250519271856.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051506283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025051958774.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目