题目内容

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)="T" f(x)成立.
(Ⅰ)函数f(x)=" x" 是否属于集合M?说明理由;
(Ⅱ)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(Ⅲ)若函数f(x)=sinkx∈M ,求实数k的值.

(Ⅰ)f(x)= 
(Ⅱ)因为函数f(x)=ax(a>0且a≠1)的图象与函数y=x的图象有公共点,
所以方程组:有解,消去y得ax=x,
显然x=0不是方程ax=x的解,所以存在非零常数T,使aT="T."
于是对于f(x)=ax 
故f(x)=ax∈M.  
(Ⅲ)实数k的取值范围是{k|k= mπ, m∈Z}  

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网