题目内容
【题目】如图,四棱锥P-ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求证:CD⊥AP;
(2)若CD⊥PD,求证:CD∥平面PAB;
【答案】(1)见解析;(2)见解析.
【解析】
试题(1)由平面,得到,由,进而证得平面,即可证明;
(2)首先证得平面,平面,得到,利用直线与平面平行的判定定理,即可证得结论。
试题解析:
(1)因为AD⊥平面PAB,AP平面PAB,
所以AD⊥AP.又因为AP⊥AB ,AB∩AD=A,AB平面ABCD,AD平面ABCD,
所以AP⊥平面ABCD. 因为CD平面ABCD,
所以CD⊥AP.
(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD平面PAD,AP平面PAD,
所以CD⊥平面PAD. ①
因为AD⊥平面PAB,AB平面PAB,
所以AB⊥AD.
又因为AP⊥AB,AP∩AD=A,AP平面PAD,AD平面PAD,
所以AB⊥平面PAD. ②
由①②得CD∥AB,
因为CD平面PAB,AB平面PAB,
所以CD∥平面PAB.
练习册系列答案
相关题目
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班45人进行了问卷调查得到了如下的列联表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 5 | ||
合计 | 45 |
已知在全部45人中随机抽取1人,是男同学的概率为
(1)请将上面的列联表补充完整;
(2)是否有的把握认为喜爱打篮球与性别有关,请说明理由。
附参考公式:
0.15 | 0,10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |