题目内容

【题目】扇形AOB中心角为,所在圆半径为,它按如图()()两种方式有内接矩形CDEF

(1)矩形CDEF的顶点CD在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设

(2)M是圆弧AB的中点,矩形CDEF的顶点DE在圆弧AB上,且关于直线OM对称,顶点CF分别在半径OBOA上,设

试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?

【答案】方式一最大值

【解析】

试题(1)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;(2)重视三角函数的三变:三变指变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等,适当选择公式进行变形;(3)把形如化为,可进一步研究函数的周期、单调性、最值和对称性.

试题解析: 解(1)在中,设,则

时,

)令的交点为的交点为,则

于是,又

时,取得最大值.

,)()两种方式下矩形面积的最大值为方式一:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网