题目内容

9、由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是
1
分析:由题意知“任意x∈R,使x2+2x+m>0”是真命题,由二次函数的性质得△<0,求出m的范围,结合题意求出a的值.
解答:解:∵“存在x∈R,使x2+2x+m≤0”是假命题,
∴“任意x∈R,使x2+2x+m>0”是真命题,
∴△=4-4m<0,解得m>1,
故a的值是1.
故答案为:1.
点评:本题考查了二次函数恒成立问题,即根据二次函数图象开口方向和判别式的符号,列出等价条件求出对应的参数的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网