题目内容

【题目】如图,⊙O是△ABC的外接圆,D是 的中点,BD交AC于E. (Ⅰ)求证:DC2=DEDB;
(Ⅱ)若CD=2 ,O到AC的距离为1,求⊙O的半径r.

【答案】(I)证明:连接OD,OC,由已知D是弧AC的中点,可得∠ABD=∠CBD ∵∠ABD=∠ECD
∴∠CBD=∠ECD
∵∠BDC=∠EDC
∴△BCD∽△CED

∴CD2=DEDB.
(II)解:设⊙O的半径为R
∵D是弧AC的中点
∴OD⊥AC,设垂足为F
在直角△CFO中,OF=1,OC=R,CF=
在直角△CFD中,DC2=CF2+DF2

∴R2﹣R﹣6=0
∴(R﹣3)(R+2)=0
∴R=3

【解析】(I)先证明△BCD∽△CED,可得 ,从而问题得证;(II)OD⊥AC,设垂足为F,求出CF= ,利用DC2=CF2+DF2 , 建立方程,即可求得⊙O的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网