题目内容
【题目】如图5所示,已知四棱锥中,底面为矩形, 底面, ,
, 为的中点.
⑴指出平面与的交点所在位置,并给出理由;
⑵求平面将四棱锥分成上下两部分的体积比.
【答案】⑴见解析;⑵.
【解析】试题分析:(1)利用三角形中位线定理及其线面平行的判定定理可得截面;
(2)是的中位线, ,可得,又,且,利用梯形面积计算公式及其体积计算公式可得四棱锥的体积.四棱锥的体积,可得四棱锥被截下部分体积.
试题解析⑴为中点.理由如下: , 平面, 平面
平面又平面,平面平面
又为的中点
为的中点
⑵底面,
又底面为矩形,
平面,又平面
是的中位线,且
,又
点到截面的距离为到直线的距离
四棱锥的体积
而四棱锥的体积
四棱锥被截下部分体积 故上、下两部分体积比.
练习册系列答案
相关题目
【题目】冬季昼夜温差大小与某反季节大豆新品种发芽多少之间有关系,某农科所对此关系进行了调查分析,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天100颗种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(参考公式: , )