题目内容
【题目】2020年寒假是特殊的寒假,因为抗击疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为11∶13,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.
(1)完成列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;
满意 | 不满意 | 总计 | |
男生 | 30 | ||
女生 | 15 | ||
合计 | 120 |
(2)从被调查的对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取3名学生,作线上学习的经验介绍,其中抽取男生的个数为,求出的分布列及期望值.
参考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
【答案】(1)表格见解析,有99%的把握认为对“线上教育是否满意与性别有关”;(2)分布列见解析,
【解析】
(1)根据男生与女生的人数之比为11∶13,以及总人数120,可求出男,女生总人数,即可完成列联表,并根据独立性检验的基本思想,求出的观测值,对照临界值表,即可判断是否有把握;
(2)根据(1)可知,男生抽3人,女生抽5人,于是,离散型随机变量 的可能取值为,并且服从超几何分布,即可利用公式(),求出各概率,得到分布列,求出期望
(1)因为男生人数为:,所以女生人数为,
于是可完成列联表,如下:
满意 | 不满意 | 总计 | |
男生 | 30 | 25 | 55 |
女生 | 50 | 15 | 65 |
合计 | 80 | 40 | 120 |
根据列联表中的数据,得到的观测值
,
所以有99%的把握认为对“线上教育是否满意与性别有关”.
(2)由(1)可知男生抽3人,女生抽5人,
依题可知的可能取值为,并且服从超几何分布,(),即
,,
,.
可得分布列为
0 | 1 | 2 | 3 | |
可得.
【题目】某媒体为调查喜爱娱乐节目A是否与观众性别有关,随机抽取了30名男性和30名女性观众,抽查结果用等高条形图表示如图:
根据该等高条形图,完成下列2×2列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目A与观众性别有关?
喜欢节目A | 不喜欢节目A | 总计 | |
男性观众 | |||
女性观众 | |||
总计 | 60 |
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |