题目内容
【题目】△ABC中,sin(A﹣B)=sinC﹣sinB,D是边BC的一个三等分点(靠近点B),记 ,则当λ取最大值时,tan∠ACD= .
【答案】2+
【解析】解:∵sin(A﹣B)=sinC﹣sinB, ∴sinAcosB﹣cosAsinB=sinC﹣sinB=sinAcosB+cosAsinB﹣sinB,
∴sinB=2cosAsinB,∵sinB≠0,
∴cosA= ,由A∈(0,π),可得:A= ,
在△ADB中,由正弦定理可将 ,变形为则 ,
∵ =
∴ 即a2λ2=4c2+b2+2bc…①
在△ACB中,由余弦定理得:a2=b2+c2﹣bc…②
由①②得
令 , ,f′(t)= ,令f′(t)=0,得t= ,
即 时,λ最大.
结合②可得b= ,a= c
在△ACB中,由正弦定理得 ,tanC=2+
所以答案是:2+ .
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.
练习册系列答案
相关题目