题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中直线的倾斜角为,且经过点,以坐标系的原点为极点, 轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点,过点的直线与曲线相交于两点,且.
(1)平面直角坐标系中,求直线的一般方程和曲线的标准方程;
(2)求证: 为定值.
【答案】(1),(2)
【解析】试题分析:(1)根据点斜式可得直线的一般方程,注意讨论斜率不存在的情形;根据将曲线的极坐标方程化为直角坐标方程,配方化为标准方程.(2)利用直线参数方程几何意义求弦长:先列出直线参数方程,代入圆方程,根据及韦达定理可得,类似可得,相加即得结论.
试题解析:解:(1)因为直线的倾斜角为,且经过点,
当时,直线垂直于轴,所以其一般方程为,
当时,直线的斜率为,所以其方程为,
即一般方程为.
因为的极坐标方程为,所以,
因为,所以.
所以曲线的标准方程为.
(2)设直线的参数方程为(为参数),
代入曲线的标准方程为,
可得,即,
则,
所以,
同理,
所以.
练习册系列答案
相关题目