题目内容
【题目】已知数列{an}是等差数列,数列{bn}是等比数列,Sn是数列{an}的前n项和,a1=b1=1,S2=.
(1)若b2是a1,a3的等差中项,求数列{an}与{bn}的通项公式;
(2)若an∈N+,数列{}是公比为9的等比数列,求证:+++…+<.
【答案】(1)an=2n-1,bn=3n-1或an=6-5n,bn=(-4)n-1.(2)证明见解析。
【解析】
(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.利用等比数列的性质求出d,q,再求出通项公式.(2)利用数列{ban}是公比为9的等比数列,求出d=2,q=3.再放缩成能利用裂项求和的方法即可.
(1)解:设等差数列{an}的公差为d,等比数列{bn}的公比为q.
因为S2=,所以a1+a1+d=.
而a1=b1=1,则q(2+d)=12.①
因为b2是a1,a3的等差中项,
所以a1+a3=2b2,
即1+1+2d=2q,
即1+d=q.②
联立①②,
解得或
所以an=1+(n-1)·2=2n-1,bn=3n-1或an=1+(n-1)·(-5)=6-5n,bn=(-4)n-1.
(2)证明:因为an∈N+,
ban=b1qan-1=q1+(n-1)d-1=q(n-1)d,
所以==qd=9,即qd=32.③
由(1),知q(2+d)=12,即q=.④
因为a1=1,an∈N+,所以d∈N.
根据③④,知q>1且q为正整数.
所以d可为0或1或2或4.但同时满足③④两个等式的只有d=2,q=3,
所以an=2n-1,Sn==n2.
所以=<=(n≥2).
当n≥2时,
++…+<1++++…+
=1+
=1+=-<.
显然,当n=1时上式也成立.
故n∈N+,++…+<.
【题目】随着南宁三中集团化发展,南宁三中青三校区2018年被清华北大录取23人,广西领先,一本率连年攀升,南宁三中青山校区2014年至2018年一本率如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
时间代号 | 1 | 2 | 3 | 4 | 5 |
一本率 | 0.7152 | 0.7605 | 0.7760 | 0.8517 | 0.9015 |
(1)求关于的回归方程 (精确到0.0001);
(2)用所求回归方程预测南宁三中青山校区2019年高考一本录取率.(精确到0.0001).
附:回归方程中
参考数据:
【题目】理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
物理成绩 | 65 | 70 | 75 | 81 | 85 | 87 | 93 |
化学成绩 | 72 | 68 | 80 | 85 | 90 | 86 | 91 |
规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.
【题目】2017年春晚分会场之一是凉山西昌,电视播出后,通过网络对凉山分会场的表演进行了调查.调查分三类人群进行,参加了网络调查的观众们的看法情况如下:
观众对凉山分会场表演的看法 | 非常好 | 好 |
中国人且非四川(人数比例) | ||
四川人(非凉山)(人数比例) | ||
凉山人(人数比例) |
(1)从这三类人群中各选一个人,求恰好有2人认为“非常好”的概率(用比例作为相应概率);
(2)若在四川人(非凉山)群中按所持态度分层抽样,抽取9人,在这9人中任意选取3人,认为“非常好”的人数记为ξ,求ξ的分布列和数学期望.
【题目】某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.
甲产品所需工时 | 乙产品所需工时 | |
A设备 | 2 | 3 |
B设备 | 4 | 1 |
若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为( )
A.40万元
B.45万元
C.50万元
D.55万元