题目内容
【题目】如果设奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式 <0的解集为( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)
【答案】D
【解析】解:由函数f(x)为奇函数,可得不等式即 ,即 x和f(x)异号,
故有 ,或 .
再由f(2)=0,可得f(﹣2)=0,
由函数f(x)在(0,+∞)上为增函数,可得函数f(x)在(﹣∞,0)上也为增函数,
结合函数f(x)的单调性示意图可得,﹣2<x<0,或 0<x<2,
故选 D.
【考点精析】通过灵活运用奇偶性与单调性的综合,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性即可以解答此题.
练习册系列答案
相关题目
【题目】从一批土鸡蛋中,随机抽取n个得到一个样本,其重量(单位:克)的频数分布表如表:
分组(重量) | [80,85) | [85,90) | [90,95) | [95,100] |
频数(个) | 10 | 50 | m | 15 |
已知从n个土鸡蛋中随机抽取一个,抽到重量在在[90,95)的土鸡蛋的根底为
(1)求出n,m的值及该样本的众数;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的土鸡蛋中共抽取5个,再从这5个土鸡蛋中任取2 个,其重量分别是g1 , g2 , 求|g1﹣g2|≥10概率.