题目内容
【题目】设函数f(x)(x∈R)为奇函数,f(1)= ,f(x+2)=f(x)+f(2),则f(5)=( )
A.0
B.1
C.
D.5
【答案】C
【解析】解:由f(1)= ,
对f(x+2)=f(x)+f(2),
令x=﹣1,
得f(1)=f(﹣1)+f(2).
又∵f(x)为奇函数,
∴f(﹣1)=﹣f(1).
于是f(2)=2f(1)=1;
令x=1,得f(3)=f(1)+f(2)= ,
于是f(5)=f(3)+f(2)= .
故选:C.
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇,以及对函数的值的理解,了解函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.
练习册系列答案
相关题目
【题目】假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
2 | 3 | 4 | 5 | 6 | |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知,y对x呈线性相关关系,试求:
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,求出y关于x的线性回归方程=bx+;
(Ⅲ)估计使用年限为10年时,维修费用约是多少?
(参考数据:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)